92078

B.Sc. 3rd Semester (New Scheme) Examination, November-2016

BIOTECHNOLOGY

Paper-BT-307

Inorganic Chemistry

Time allowed: 3 hours]

[Maximum marks: 40

Note: Attempt five questions in all. Question No. 1 is compulsory. Select one question from each section.

- 1. (a) Write the general electronic configuration of d-block elements.
 - (b) What is Ferri-magnetism?
 - (c) How can you explain the anamalous electronic configuration of chromium?
 - (d) Name the first and last element of Second transition series.
 - (e) Why tetrahedral complexes does not show geometrical isomerism?
 - (f) Why does NH₃ readily form complexes but NH₄⁺ does not?
 - (g) What are amphoteric solvents?
 - (h) Why solutions of alkali metal in liquid ammonia are blue in colour? 8×1=8

Section-A

2. (a) The compounds of transition elements are generally coloured. Explain.

[P.T.O.

	a.V	Describe the manual and a street Carry			
	(p)	Describe the magnetic properties of trans	_		
	1)	elements.	2		
	(c)	Describe the structure and properties of:	4		
	/	(i) CuCl ₂			
		(ii) FeCl ₃			
3.	(a)	Why Cu ²⁺ is more stable than Cu ⁺ ?	2		
	(b)	Explain the catalytic properties of transition			
	9	elements.	2		
	(c)	Out of Fe ³⁺ and Zn ²⁺ , which one is coloured	d and		
		why?	2		
	(d)	Why do transition elements forms a large nu	mber		
		of coordination compounds?	2		
		Section-B			
4.	(a)	Compare the 3d elements with 4d and 5d elements	nents		
		with reference to:			
		(i) Oxidation State			
		(ii) Ionic radii			
		(iii) Stereochemistry.	6		
	(b)	Why the electronic spectra of first transition series			
		are easy to interpret as compared to second	d and		
		third transition series?	2		

5.	(a)	Discuss the general characteristics and prope	erties
	d	of second and third transition elements.	4
	(b)	Complexes of first transition series are ma	ainly
*		high spin while those of second and third trans	ition
		series are of low spin. Explain.	4
2		Section-C	
6.	(a)	What are chelates? Describe the factors w	hich
		affect the stability of chelates.	4
0.00	(b)	Write the basic postulates of Werner' coordinates	ation
		theory. Explain the bonding in CoCl ₃ .5NH ₃ o	n the
	94	basis of this theory.	4
7.	(a)	Differentiate between low spin and high	-
	4.	complexes with suitable examples.	4
	(b)	Describe the Ionisation and Hydrate isomeris	
		coordination with suitable examples.	4
		Section-D	
8.	(a)	Differentiate:	4
		(i) Ionising and non-ionising solvents	
		(ii) Solvolytic and Solvation reactions	
	(b)	Describe the acid-base reactions in	4
		(i) Liquid NH ₃	
		(ii) Liquid SO ₂	

9. (a) Describe briefly the physical properties of solvent.

4

(b) Discuss the Solvolytic reactions in:

1

(i) Liquid NH₃

(ii) Liquid SO₂